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NON-ITPFI DIFFEOMORPHISMS* 

BY 

JANE HAWKINS 

ABSTRACT 

We construct C ~ diffeomorphisms of T 4 which give rise via the group measure 
space construction to factors which are not ITPFI. We extend the construction 
to arbitrary paracompact, connected manifolds of dimension => 6. 

introduction 

This paper  extends results of [10-12, 14, 15, 19] and others concerning ergodic 

diffeomorphisms of C ~ manifolds which do not preserve any it-finite measure 

equivalent to the given smooth measure.  In particular we are interested in the 

classification of ergodic group actions on a measure space generated by a single 

ergodic non-singular transformation up to orbit or weak equivalence (see §1 for 

definition). We describe the ratio set introduced by Krieger in [19], but we 

concentrate on type III,, diffeomorphisms in this paper.  (It has been shown that 

for each fixed A E (0, 1], all type Ilia transformations are weakly equivalent, but 

type III,, t ransformations are highly non-unique, [3, 4, 19].) 

The group measure space construction [25] gives a canonical method for 

associating to the action of an ergodic transformation on a Lebesgue space a yon 

Neumann  factor; weakly equivalent transformations give isomorphic factors (see 

[23, 28]). In this paper  we construct type IIio diffeomorphisms whose associated 

factors exhibit a special property,  i.e., are non-ITPFI.  Our  construction is not on 

the algebraic level (we construct the diffeomorphisms, not the factors), although 

we use algebraic conditions for a factor to be non-ITPFI  given by Connes and 

Woods [6, 7], and then apply Krieger 's  theorem [23] which includes the result 

that there is a one-to-one and onto correspondence between equivalence classes 

of ergodic measurable flows and flows of weights. 

Krieger was the first to construct a non-ITPFI  factor in 1970 [22]; it was 
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Connes who proved that Krieger's factor was non-ITPFI [3]. Here  we construct a 

C ~ diffeomorphism of T 4 whose associated factor is non-ITPFI, or equivalently, 

a diffeomorphism which is not weakly equivalent to an odometer  of product type 

(cf. §1). Katznelson has shown that there is a bijection between ITPFI factors 

and weak equivalence classes of C 2 diffeomorphisms of T ~ with irrational 

rotation numbers having unbounded continued fraction coefficients [15]. 

We have shown in [10] that every paracompact, connected manifold of 

dimension greater than or equal to three admits a smooth type IIio diffeomor- 

phism. All these examples seem to lie in the same (ITPFI) weak equivalence 

class. In this paper we give a different construction, from which we can obtain an 

uncountable family of non-weakly-equivalent type IIio diffeomorphisms of T ~, 

and a non-ITPFI diffeomorphism of T 4. The method used is based on an 

example given in [8]. These diffeomorphisms have natural extensions to higher 

dimensional manifolds, which we give in §5. 

In section 1 we introduce some necessary definitions and notation, and section 

2 offers a short presentation of the flow associated to an ergodic automorphism; 

a more detailed version can be found in [8]. Section 3 gives a method for 

obtaining a C ~ diffeomorphism of a manifold X × T ~ whose associated flow is 

any prescribed measure-preserving C a flow on a smooth manifold X. Sections 4 

and 5 contain the examples mentioned above, which are obtained from the 

construction given in §3. 

§1. Notation and definitions 

Let (X, fie,/~) denote a Borel space where /z is a probability measure on 

(X, fie). We define f to be a non-singular ergodic transformation of (X, 5e, ~ )  if 

_)c,p.  (where f , / z ( A )  = ~(J-~A) for every A U fie), and if every f-invariant 

set B Efie satisfies either ~ ( B ) = 0  or / ~ ( B ) = I .  We define the set 

Aut(X, fie, l.~ )= {g : (X, fie, l.t) ~ such that g is invertible, bimeasurable, and 

g , /z  - / z  }, and let Og (x) = {g" (x) : n E Z}. The lull group of g E Aut(X, ~ , / z )  is 

defined by 

[g] ={h  E Aut(X, 5¢,/z) : h(x )E  Q(x) for / z -a .e .  x EX } .  

DEFINmOr~ 1.1. Two transformations f, g E Aut(X, ~,/ . t)  are weakly equi- 
valent or orbit equivalent if there exists a bimeasurable invertible map ~b : X ~ X 

with qs;1/z -/.~ and qJ(Ot(x)) = Og(~b(x)) for /z -a .e ,  x E X .  

We now introduce an invariant of weak equivalence. 

DEFINmOr~ 1.2. Let  f E Aut(X, 5e,/.t) be an ergodic transformation. A non- 
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negative real number t is said to be in the ratio set off, r*(f), if for every Borel 

set B E 5e with /x (B) > 0, and for every e > 0, 

Here dl~f "/d~ denotes the Radon-Nikodym derivative of f , t  x with respect to 

p.. We set r(f) = r*(f)\0. It has been shown that r(f)  is a closed subgroup of the 

multiplicative group of positive real numbers R +, and that f admits a ~r-finite 

invariant measure equivalent to ~ if and only if r*(f) = {1}, [19]. If not, there are 

three possibilities: 
(1) r* ( f )=  {t ~ R : t - > 0 } ,  in which case / is said to be of type III,; 

(2) r*~)  = {0} U {A" : n @ Z} for 0 < ,~ < 1; in this case f is said to be of type 

IIL ; or, 

(3) r* ( f )=  {0, 1}. Then f is of type Iilo. 

For each A ¢ 0, type Ilia automorphisms form a weak equivalence class, but 

type IIIo automorphisms are highly non-unique. 

We define an odometer of product type. 

DEFINITION 1.3. Let {nk}~=~ be a sequence of positive integers, and set 

X = II~=j{0, 1, . . . ,  nk - 1}, with the product Borel structure. Define T on X by: 

t 
0 if k < N(x), 

(Tx)k = x k + l  if k = N ( x ) ,  

xk if k > N(x), 

where N(x) = inf{k => 1 :xk~ nk - 1}. (In particular, T({nk - 1}) is the zero 

sequence.) Let vk be a probability measure on {0, 1 , - . . ,  n ~ -  1} such that the 

probability of every digit is positive and the product measure u = 11uk is 

non-atomic on X. It is not hard to check that u is ergodic and quasi-invariant 

under T. By 6({nk},{u~}) we denote the odometer of product type defined by T 

on (X, v). An automorphism f of a Lebesgue space (X, 5e,/~) is of product type 
(or ITPFI) if it is weakly equivalent to some (7({nk},{~'k}). 

REMARKS. (1) One important method used to study weak equivalence classes 

of systems f EAut (X,  Se,/z) is to study the crossed product algebras 

W*(L~(X, tz), f);  i.e., the group measure space construction of von Neumann 

[25]. An ergodic transformation has a v o n  Neumann factor associated to it in a 

canonical way and weakly equivalent transformations give isomorphic von 

Neumann factors. These factors are sometimes called Krieger factors. In 

particular, automorphisms of product type give factors W* which are ITPFI; 
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that is, W * =  (~)~=, (Mk,thk) acts on the Hilbert  space Hk = (~)~=~ (Hk,qb~) 

where the Mk are type I,  k factors acting on Hk, 2_--< nk _--<~, and ~b~(x)-- 

(~k, x ~ k )  is a faithful state on Mk. For details see [1]. From now on we will refer 

to automorphisms of product type as ITPFI  automorphisms.  

(2) Katznelson has shown that every C 2 diffeomorphism of T ' =  R/Z whose 

rotation number  has unbounded continued fraction coefficients is ITPFI,  and 

that every odometer  of product type is weakly equivalent to a C ~ diffeomor- 

phism of T ~ [15]. 

§2. The flow associated to an ergodie automorphism 

A one parameter  group { U, : - oo < s < ~} of automorphisms of (X, 0 °, tz) is 

called a measurable non-singularflow if the map (x, s) ~ U,x from X x R onto X 

is measurable.  If $ : X ~ R is measurable and satisfies ~b(Usx) = $ (x )  for /z-a .e .  

x E X and every - ~ < s < 0% then ~0 is called a { Us }-invariant function. If { Us } 

admits no non-constant invariant functions then we say that {Us} is an ergodic 
flow. Two flows Us : (X, S,/z ) ~ and U's : (X' ,  S',/.t ') ~ are isomorphic if there 

exists an invertible bimeasurable map p :X--*X'  such that pT~ ' /z - /z  and 

satisfying U',p(x) = pU,(x) fo r / z -a . e ,  x E X. 

The following definitions and results come from [8]. 

DEFINITION 2.1. Let (X, oW,/z) be a Lebesgue space with p. a probabili ty 

measure and let ~" be an arbitrary partition of X. We denote by ~(~ ' )  the 

sub-g-a lgebra  of 5e consisting of all sets in ,9 ° which are unions of elements of ~'. 

We define s r to be a measurable partition of X if there exists a countable set of 

sets B, ,  n = 1,2,- • • in ~ (Se) such that for any Ct, C2 ~ ~', C~ # 6'2, there exists 

an n such that either CI C B, and 6'2 C X \ B, ,  or C2 C B, and C~ C X \ B..  

Let ( be a measurable partition of X and zr the natural surjection from X 

onto X/~, i.e., 7rx = ~rx' if x and x '  are in the same element C(~') of ~'. We define 

5e~ to be the w-algebra consisting of all sets E ~ X/~ such that 7r-lE ~ ~(~').  

Let / z~(E)= /z (z r  *E) for all E in ~ .  If /z~ has no atomic parts, then 

(X/~, 5e~, tz~) is a Lebesgue space, called the quotient measure space of (X, 9 °,/z) 

with respect to ft. 

We now consider the Z-action of an ergodic automorphism f on (X, 5 °,/x), i.e., 

(n, x) ~ f"x for every n E Z, x E X. We define 

Sf(x,t)=(fx,  t - l o g d - ~ ( x ) )  f o r e v e r y ( x , t ) E X x R .  
dtz 

By (X x R,S e x J , / . t  @ h )  we will denote the measure space obtained by 



VOI. 42, 1982 NON-ITPFI DIFFEOMORPHISMS 121 

forming the cartesian product of (X, b °, Ix) and (R, J-, A ), where A denotes Haar 

(Lebesgue) measure and the product ~r-algebra is formed in the usual way. 

DEFINITION 2.2. A map Ob from X × R  onto a Lebesgue space ( Y , ~ , u )  is 

called a factor map with respect to SI if it satisfies: 

(1) ~b-'A E 5¢ x 3 if and only if A ~ ~:. 

(2) Ix(~b-~A)=O if and only if u(A)=O,  'CA E ~ .  
(3) ~b o St(x, t) = ~b(x, t) for a.e. (x, t) E X x R. 

(4) If ~1 : X × R is an Si-invariant function, then there is a function ~ : Y--> R 

such that ~?(x,t)= r~(~b(x, t)) for Ix @A-a.e. ( x , t ) E X  xR.  

The following lemma states that factor maps are unique up to isomorphism. 

LEMMA 2.3. [8] Let ck~ and ek2 be measurable maps from (X × R, ~ x 

J-, Ix @ A) onto Lebesgue spaces ( Y~, o%, u~) and ( Y2, ~,., u,.) respectively, satisfy- 

ing v~ (A,) = 0 if and only if Ix @ A (cb,~A~) = O, A, E o~ for i = 1,2. I f  for any 
measurable function £12 on Y2 there exists a measurable function ¢1~ on Y~ 

satisfying : 

¢12(62(x, t)) = ¢7~(6,(x, t)) for a.e. (x, t) ~ X x R, 

and if for any measurable function ¢1~ on Yt there exists a measurable function ¢1~_ 
on Y2 satisfying the above equation, then there exists an isomorphism 
~b : ( Y~, ~ ,  uz)--~ (Y2, g~2, u2) satisfying ~/,(~b,(x, t)) = ~b:(x, t) for a.e. 
( x , t ) ~ X  x R .  

Let if(f) denote the measurable partition which generates all S I invariant sets, 

and let 7r I denote the natural surjection from X x R onto the measure space 

X x R/(( f ) .  It is easy to see that 7r r is a factor map with respect to Sf. We now 

define a flow on X x R  by T , ( x , s ) = ( x , s + t )  for every ( x , s ) E X ~ R ,  and 

- ~ <  t < ~ .  Since SI commutes with {T,} for all t ~ R ,  the image under ~rf of 

{ T, } is a flow on (X x R / i  (f), 6e~, Ix~) defined by ~ (~r I (x, s)) = 7r I (T, (x, s)) for 

a.e. (x, s ) E  X x R. It has been proved that weakly equivalent transformaffons 

f : (X, 6e, Ix) ~ and f ' :  (X', S', Ix') ~ give rise via the above construction to 

isomorphic flows, {~rrT, } and {Tr r T',}, and we call the isomorphism class of the 

flow the flow associated to f. An automorphism f is of type IIIo if and only if its 

associated flow is an aperiodic conservative ergodic flow [8, 23]. 

§3. Construction of a type IIIo diffeomorphism 

In [10] a method was given for constructing smooth type IIIo diffeomorphisms 

of any paracompact manifold of dimension greater than or equal to three, as well 
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as on T z. We give a different method here for constructing type III0 diffeomorph- 

isms, based on a construction of (non-smooth) automorphisms given by Hamachi 

and Osikawa [8]. This method only provides examples in dimensions > 3 but the 

advantage of this construction is the following: given any smooth measure 

preserving flow, {Us}, of a C ~ manifold, we can construct a C ~ diffeomorphism 

whose associated flow is {Us}. 

In section 4 we will use this construction to prove the existence of non-ITPFI 

diffeomorphisms since Connes and Woods proved that ITPFI transformations 

must have certain types of associated flows [6, 7]. 

The main theorem of this section gives a method for constructing an ergodic 

type IIIo transformation of a manifold, which may not be smooth, but is weakly 

equivalent to a smooth diffeomorphism with a prescribed associated flow. We 

first need a lemma proved in [8] about type IIL transformations. 

DEFINITION 3.1. Let f E Aut(X, 9O,/z) be ergodic. If there exists an ergodic 

subgroup H of [f] and a or-finite measure/2 which is H-invariant and equivalent 

to/x, we say that/2 is an f-admissible measure. If there exists a countable subset 

F C R + such that for any n E Z, d/2f-" (x)/dfi E F for a.e. x E X, then fi is strictly 

admissible. 

LEMMA 3.2. Every ergodic automorphism f of a Lebesgue space (X, 9O, I~ ) of 

type IIL admits a strictly admissible finite measure/2 and 

A(/2,f)= r E r l 3 n E Z s . t .  ~ x :  d/2 

is a dense subgroup of R*. 

In what follows, (X, 9O, tx) will denote a paracompact C ~ manifold, ~. a smooth 

or-finite measure, and 9 o will denote the or-algebra of Borel sets of X. Similarly, 

(Y, ~, u) will denote a C a manifold with u a smooth measure. 

THEOREM 3.3. Let f E Ditt~(X) be an ergodic diffeomorphism of X, and let 

{Us} be a C a flow on (Y ,~ ,  u) which is aperiodic, ergodic, and measure 

preserving. 

Assume that f is of type IlL and that/2 ~ ~ is a strictly f-admissible measure, 

and define a transformation on X x Y by: 

F(x, y) = (fx, U,o,~,~t-'~/d~(y)) forevery x E X a n d  y E Y. 

Then F is an ergodic transformation of (X × Y, 9O × ~, I~ (~ u) which gives a 

type IIio Z-action, and whose associated flow is {Us}. 
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PROOF. Let  ~o : X x Y x R--~ Y be defined by ~o (x, y, t) = U, (y)  for  every  

x E X, y E Y, t E R. Consider  the t ransformat ion St defined as in §2: 

d/i, Q vF ' Y)) St(x, y, t ) =  (fx, U,o~r ~x)/d~)(t), t-log d/2 ~ ) u  (x, @ 

We claim that ~0 o Sv -- q~, t2 @ ~, @ m-a.e.  (where m denotes  Lebesgue measure  

on R). The claim is true because for any (x, y, t ) ~  X x Y x R, 

( ) q~ o St(x, y, t) = ~ fx, U,o~dCr,(x)/e~)(y), t - log d/2 @ ~, (x, y)  

= U , - , o ~ ® ~ - , ~ , , ~ , ~ ® ~ ( U , o ~ i  , .~(y))  

Now since Us preserves ~,, we have 

log d~'(~uF-' (x ,y )  = log ( ( Df-~(x), 0 )) d/2(~u det\DxU~(x,y) Dr.U~(x,y) 

where  

SO 

1 = log dfif-J d/2 (x), 

l°gd~@vF-'d/2@u ( x , y ) = l o g  det  DxUz(x,y) = l o g  (x). 

Thus  ~0 oS~(x,y,t)= U,(y)  = ~o(x, y, t) /2 @ v ~) m-a.e . ,  proving the claim. 

Our  aim is to prove that ¢ is a factor map onto  X x Y x R/~(S~) ~ Y. In o rder  

to prove this we need to show that for any SF-invariant function tO : X x Y x R 

--*R there is a function t~ defined on Y such that tO(x,y,t)=J.O(~o(x,y,t))= 
~ ( U , ( y ) )  for a.e. (x,y,t)@Xx Y x R .  

Suppose that tO is S~-invariant. Consider  all h E [jr] such that  

(3.1) d~h-~ ( x ) =  1 fo r /2 -a . e ,  x E X .  
d/2 

We know that there  exist au tomorphisms  h satisfying (3.1) by L e m m a  3.2, since 

/2 is an/ / -admiss ible  measure .  Then  for a.e. (x, y, t) E X x Y x R, 

(3.2) tO(hx, y, t) = tOo S~(hx, y, t) 

(3.3) =tO(f(hx),U, og,d~,-,,,~,/,~,(y),t-logd~f-l(hx)) 
d/2 
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d - - '  ) n (x )  
(3.4) =4`  f(f"~X)x)'U~°~daF'(:"'*'x)laa)(Y)'t-l°g d~ (f x) . 

By (3.1) and the chain rule, 

dfi. 

= 6(x ,  y, t). 

Since the group satisfyting (3.1) is ergodic,  4' must be ~-a .e .  constant  with 

respect  to x, so 4` is a funct ion of (y, t). Then  we have: 

( (3.6) 4` U, og~r ,~x)~)(y), log a / ~  = 4`(y' t) 

for  a.e. (x, y, t ) E  X x Y × R. L e m m a  3.2 implies that  the set 

[ } i o g ~  (x) :  n E Z  

is dense in R for ¢ -a .e .  x ~ X, and since the flow {Us} is cont inuous,  we have 

4`(g~ (y),  t - s) --- 4`(y, t) for v @ m-a.e .  (y, t) E Y x R, for  every  - ~ < s < ~. In 

part icular,  setting s = t, we have for ¢ @ v @ m-a.e .  (x, y, s)  E X x Y x R, 

4'(x, y, s)  = ~ ( y , s )  = ~ ( U s ( y ) . 0 )  = ~(~,(x,  y, s)). 

The re fo r e  9~ is a factor  map from X × Y x R onto  Y with respect  to Sr and the 

associated flow of F is {Us}. 

As an easy corollary of T h e o r e m  3.3 we obtain a di f feomorphism which is of 

type III0. 

COROLLARY. 3.4. If we replace ~ in the statement of Theorem 3.3 with the 

given smooth measure # on X and define 

G (x, y ) = (fx, U~og~d,t-'~x)/d,)(Y )) for every (x, y ) E X x Y, 

then G is a diffeomorphism which is weakly equivalent to F. 

PROOF. To  see that G is a dif feomorphism,  we remark  first that 

( x , y ) ~  (fx, U , (y ) )  is a di f feomorphism for each s E R ,  and that 

G(x, y)  = fix, U,o~,~.:-,,~,,~.,(y)) 

is C ~. 

It is not  difficult to see that G -l exists and is defined by: 
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(3.7) (X, y ) ~ (f 'X, U,og~n~tcx~/d~)(y)), 

which is also C ~. This proves that G is a diffeomorphism. (To check (3.7), we 

verify that G o G  t ( x ,y )=  (x,y)  as follows: 

(3.8) G o G - t ( x ,  y) = G( f  'x, Uto,Cd,t~x),d,,(y)) 

(3.9) = (f of Ix, Ulog~r-'~t '~/~,~° U,og~,f~/~(y)) 

(3.10) = (x, U,og~i '~I-'x)/~)+~o~,t,~/d,)(Y)) 

(3.11) = (x, y). 

We obtain (3.11) from (3.10) since 

d/~ (id)-' d/z (f °f-l)-' (x) 
0 = log (x) = log d/x (x) = log d/z 

= l o g [ d - ~ ( f - l x ) ' d d - ~  (x) ] 
[ dtx 

= log d~ /  ' ( f - 'x )  + log d-~ tx~  
d/x d/~ " " 

recalling that d l z [ /d t t  denotes the Radon-Nikodym derivative of f.~/z with 

respect to /x. 
Similarly, we can show that G -~o G ( x ,  y ) =  (x, y)  for every (x, y ) E  X × Y.) 
To show that G is weakly equivalent to F, we exhibit a measurable 

isomorphism which takes orbits of F to orbits of G. We define H : X × Y ~ X × 

Y by: 

(3.12) H (x, y ) = (x, U, og,.~,,,x)/aa)(y )) 

for all (x, y) E X × Y. It is not difficult to see that H is measurable, invertible, 
and leaves the measure /x @ ~, on X × Y quasi-invariant. We claim that 
H o F = G o H  tz Q u-a.e. To prove the claim, (3.12)implies: 

(3.13) H o F ( x ,  y )  = H (fx,  Ulog(d~Zf-~(x)ld#)(y )) 

(3.14) = (fx, Ulog(aMfx )/dt~ )+,og(at.z! '(x )/at~ )(Y ) ) 

(3.15) = fix, U,o~,,,,:-,,~,/~,(y)) 

for ~ ~)v-a.e .  ( x , y ) ~ X  × Y. Statements (3.14) and (3.15) are equal by an 

application of the chain rule. 
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Similarly, 

(3.16) 

(3.17) 

(3.18) 

G ° H ( x .  y ) = G (x, U~og(d,.~w,~)(y )) 

= (:x. U,o~(..r , , .~ .~+,o .~ .~ .~ , . (y ) )  

= (fx. U,o~ . :  ,~.~:~(y))  

= H oF(x,  y) /z @ v-a.e, by (3.13)--(3.15). 

This concludes the proof of the corollary. 

REMARK 3.5. In [1] Araki and Woods constructed uncountably many non- 

isomorphic type IIIo factors. In [21] Krieger constructed an uncountable family 

of non-weakly-equivalent ergodic automorphisms of type IIIo. Here we construct 

an uncountable family of non-weakly-equivalent type IIIo diffeomorphisms of 

T 3. We define the family, denoted G,, 0 < A < 1, as follows. Let jr E Ditt~(T ~) be 

of type 11Ii, and let g, ~ Ditt~(T t) be of type IliA. These diffeomorphisms exist by 

[14]. Let U~ denote the suspension flow of g~; i.e., the flow induced by 
U , ( y , z ) = ( y , z + s )  V y E T  ~, z E R ,  s E R  on the space T ~xR/(y,z)  
(gTy, z + n) for all y E T ~, z E R, n ~ Z. This defines an aperiodic, conservative, 

ergodic flow on T 2, which we call U~. 

For (x ,y ,z)E T 3, we define: 

Oh (x, y, z)  = fix, Ufog~m1-'~.~,m~(y, Z)), 

using m to denote Lebesgue measure on T t. By Theorem 3.3 and Corollary 3.4 it 

follows that GA is of type IIio with Us* as its associated ergodic flow. Since g, is 

not weakly equivalent to g~ if A #/3, then U~ is not isomorphic to U~; hence G~ 

and Go cannot be weakly equivalent. 

§4. Non-ITPFI diffeomorphisms 

In this section we use results of Connes and Woods which give conditions for 

Krieger factors (cf. §1) to be non-ITPFI (see [6, 7, 28]). Combining these results 

with Krieger's theorem which gives an isomorphism between aperiodic, conser- 

vative, ergodic flows and flows of weights on type III0 Krieger factors allows us to 

obtain non-ITPFI ditteomorphisms. In fact the flow associated to an ergodic 

group action of f on (X, 5e,/~) is the same (up to isomorphism) as the flow of 

weights obtained from the Krieger factor W*(L~(X,I~),[). (See [27] for a good 

exposition of this point.) 

We begin with a definition of a property which is stronger than ergodicity. 
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DEFINITION4.1. [7] Let (X, 3e, IX) be a Lebesgue space and let 

a : G ~ Aut(X, 5e, IX) be a homomorphism from a locally compact group G to 

the group of automorphisms of (X, 5 ~,Ix). We say that a is approximately 

transitive if given e > 0 and h,, . . ., h, E L '+(X, IX), there exists h ~ L '+(X, Ix) and 

Y , , ' " , 7 ,  EL'+(G, dg) such that for every l _ - < j -  < r, 

h ,  - h ° a~ " % (g ) " d-P~ , <- e, 

where dIxa~/dIx denotes the Radon-Nikodym derivative of a s. Ix with respect to 

Ix, We say also that ot is AT, or, when G -- Z and the action is given by a single 

transformation f = a~, we say that f is AT. A flow built under a constant ceiling 

function is AT  if and only if the base transformation is AT [7]. 

We now state some results on AT  transformations and flows. 

THEOREM 4.2. [7] If f E Aut(X, 5e, Ix) is AT, then f is ergodic. 

THEOREM 4.3. [7] If W* is a Krieger factor, which is ITPFI, then the 

associated flow of weights is AT. 

COROLLARY. 4.4. If  f is an ergodic automorphism of (X, 5 e, Ix) which is 

ITPFI, then its associated flow is AT. 

THEOREM 4.5. [7] If f is a finite measure-preserving transformation which is 

AT, then f has zero entropy. 

Our task is now a simple one. We consider the diffeomorphisms of T 2 -- R2/Z 2 

given by the matrices 

n 1 ' 

that is, U, (yi, y2) = ((n + 1)yi + y2, ny~ + y2)(mod 1) for every integer n ~ 1, and 

for every (yl, y2)~ T 2. Each U, gives an ergodic, measure-preserving group 

automorphism of the torus isomorphic to a Bernoulli shift [13]. Since the entropy 

of U, is log((n + 2 + X/n(n + 4))/2), then Theorem 4.5 implies that U~ is not AT. 

We now take the suspension flow of U, for each n, and we can easily check that 

we obtain a countable family of aperiodic, conservative, ergodic flows which are 

all mutually non-isomorphic. 

The following result is now easily proved. 

THEOREM 4.6. There exists a C ~ diffeomorphism of T 4 which is non-ITPFI. 
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PROOF. Let f E DiW(T')  be a type III1 ditteomorphism. Let {U,}s~R be the 

flow defined as above for n = 1, i.e., U :  T 2 ~  T 2 is given by U(y~,y~)= 

(2y~ + y:, y, + yz) (rood 1), and {U~} is the suspension flow of U on T 3. 

By Corollaries 3.4 and 4.4 the map K : T4--* T 4 defined by: 

K(x, 37) = (fx, Ujog~amt-,<~)/~,~)(37)) for every x E T', )7 E T 3 

is a diffeomorphism which is non-ITPFI. 

COROLLARY. 4.7. There exists a countably infinite family of weak equival- 

ence classes of non-ITPFI diffeomorphisms of TL 

§5. Difleomorphisms of higher dimensional manifolds 

In this section we use methods from [10] and [11] to extend our construction to 

higher dimensions. The following lemma is necessary to generalize the construc- 

tion. 

LEMMA 5.1. Suppose K : T 4---> T 4 is defined as in Theorem 4.6. Let K,  : T 4 x 

R ~ T" x R be defined by : 

K , (x ,  ], t) = (K (x, 37), t + ~O(x, 37)) 

for every (x, 37) E T 4, t E R, and qJ ~ C~(T 4, R); suppose also that K ,  is ergodic 

with respect to Lebesgue measure on T ' ×  R and is of type IIio. Then K~ is 

non -ITPFI. 

PROOF. The idea of the proof is to show that K,  is weakly equivalent to K, 

and is therefore non-ITPFI. 
We first remark that by Corollary 3.4, K is weakly equivalent to: 

g ( x.  37) = f i x .  U ,o., ' . dm ( 37 ) ) 

where tfi - m is a strictly f-admissible measure on T ~. We then claim tha t /~  is 

weakly equivalent to /~,, which is defined on T ' ×  R by: 

g ,  (x, 37, t) = ( g  (x, 37), t + q,(x, 37)). 

It follows that /£, has the same associated ergodic flow, {U,}, as /£. (The 

associated factor map fo r /~ ,  is q5 : T 1 × T 3 × R x R---> T 3 given by q3(x, Y, t, s) = 

U, (37).) Another application of Corollary 3.4 shows tha t /~ ,  is weakly equivalent 

to K,.  The result follows from the transitivity of weak equivalence. 

To see that Lemma 5.1 is not vacuous, we apply a theorem from [10]. Let 

(X, 5¢,/z) denote a smooth connected paracompact manifold with lz a C ~ 
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probability measure on X. Let g E DiW(X) be an ergodic diffeomorphism. We 

define the set 

= el{t0 E C~(X, R) I to = ~ - 7/o g for some Borel map ~ : X ~ R}, 

where cl denotes the closure taken with respect to the C ~ topology in C~(X, R). 

The next theorem states that there are many functions in ~ (in the Baire 

category sense) which give ergodic extensions if g is of type IIIo. 

THEOREM 5.2. Suppose that g E Diff ' (X)  is an ergodic type IIIo diffeomorph- 

ism. Then the set 

C¢o = {to E ~ I(z, t) ~, (gz, t + to(z )) Vz E X, t E R, is of type IIIo} 

is a dense Gn in c~. 

We use this to prove the next theorem. 

THEOREM 5.3. There exists a diffeomorphism of T ~ x R p for every p >= 0, which 

is C ~ and non-ITPFI. 

PROOF. We use induction on p. We start with K ~ Diff~(T ~) defined in 

Theorem 4.6. For p = 1, the theorem is true by Lemma 5.1 and Theorem 5.2. 

Assume the theorem is true for p = ]. Then suppose that K i E Diff~(T ~ × R j) is a 

non-ITPFI dilteomorphism. By Theorem 5.2 there is at least one function 

0 : T4xRS---->R such that (zj, t )~ (K i ( z s ) , t+ to ( z~ )  ) V z j E T ~ x R  j, t E R ,  is of 

type IIio. Then by Lemma 5.2 this map is a non-ITPFI diffeomorphism of 
T 4 x R s+~. 

Finally, to extend our result to arbitrary manifolds of dimension => 6 we apply 

the following lemmas. 

LEMMA 5.4. [11] Let X be a p-dimensional C ~ paracompact connected 

manifold and IX a C ~ measure on X. Then there exists an open set V C X, 

diffeomorphic to R p and satisfying tx ( X -  V ) =  O. 

LEMMA 5.5. [11] I f  p >- 6, there exists an open set W of R p diffeomorphic to 

T 5 x R p-5 such that m ( R  p - W )  = 0.  

LEMMA 5.6. Let Ko E Diff(T 4) denote the ergodic non-ITPFI diffeomorphism 

(K)  defined in Theorem 4.6, and by Kj, ] >= 1, we will denote a diffeomorphism of 

T 4 x R j of the form : 

( Z ,  t h  t2, " " ", tj ) ~ (Ko(z ), t t  + tol(Z),""  ", tj + toj (Z, t h  " " ", t j - l ) )  
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for every z E T a, t, ~ R, 1 <= i <= ]. I f  F] : T 4 × R j >( T 1 ~ denotes the suspension 

flow of Kj, then for m-a.e. So ~ R, and for every j >-O, Fifo is a non-ITPFI 

diffeomorphism. 

PROOF. Since Kj is ergodic, then for almost every So ~ R, F'~ o is ergodic [11]. 

Using the same argument as in the proof of Lemma 5.1, we see that Kj and F~o 

have the same ergodic flow associated to them so they are weakly equivalent, 

hence F~,, is non-ITPFI. 

LEMMA 5.7. [10, 11] Let W be an open set of R p, and let F~ denote a C~ flow of 

type III on W. Let X be the infinitesimal generator of Fs, i.e., X is defined by : 

o-2(w)l,=o=xoF,(w) V w ~ W .  

We define q~ E C~(W, R), ~ > 0 such that the vector field q~X is globally integrable 

and defines a flow G~. Then G~ is weakly equivalent to F~. 

THEOREM 5.8. There exists a C ~ non-ITPFI diffeomorphism on every con- 

nected, paracompact manifold of dimension >= 6. 

PROOF. By Lemmas 5.4 and 5.5 there exists an open set W C  X of full 

measure and such that W is diffeomorphic to T 5 × R e-s (where X is of dimension 

p->6) .  By Theorem 5.3 there exists a C a non-ITPFI diffeomorphism of 

Tax  RP-5; we denote it by Kp-5. We then take the suspension flow of Kp_5, 

denoted F~ -5, as in Lemma 5.6. Suppose that X p-5 denotes the infinitesimal 

generator of F~ -5. We now define ¢p E C~(X, R) such that ~o > 0 on W, q~ = 0 on 

X -  W, and such that the vector field 

fq~(x)xP-5(x), if x E W 
Y ( x )  1 

l O, i f x ~ X - W  

is C ~ on X and globally integrable, thus defining a flow G f  -5 on X. By Lemma 

5.7, G f  -5 is weakly equivalent to Ff  -5. Then Lemma 5.6 implies that for m-a.e. 

So E R, G,P0 -5 is a non-ITPFI diffeomorphism of X. 
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