NON-ITPFI DIFFEOMORPHISMS*

BY

JANE HAWKINS

ABSTRACT

We construct C^* diffeomorphisms of T^* which give rise via the group measure space construction to factors which are not ITPFI. We extend the construction to arbitrary paracompact, connected manifolds of dimension ≥ 6 .

introduction

This paper extends results of [10-12, 14, 15, 19] and others concerning ergodic diffeomorphisms of C^* manifolds which do not preserve any σ -finite measure equivalent to the given smooth measure. In particular we are interested in the classification of ergodic group actions on a measure space generated by a single ergodic non-singular transformation up to orbit or weak equivalence (see §1 for definition). We describe the ratio set introduced by Krieger in [19], but we concentrate on type III_0 diffeomorphisms in this paper. (It has been shown that for each fixed $\lambda \in (0,1]$, all type III_A transformations are weakly equivalent, but type III_0 transformations are highly non-unique, $[3, 4, 19]$.)

The group measure space construction [25] gives a canonical method for associating to the action of an ergodic transformation on a Lebesgue space a yon Neumann factor; weakly equivalent transformations give isomorphic factors (see [23, 28]). In this paper we construct type III_0 diffeomorphisms whose associated factors exhibit a special property, i.e., are non-ITPFI. Our construction is not on the algebraic level (we construct the diffeomorphisms, not the factors), although we use algebraic conditions for a factor to be non-ITPFI given by Connes and Woods [6, 7], and then apply Krieger's theorem [23] which includes the result that there is a one-to-one and onto correspondence between equivalence classes of ergodic measurable flows and flows of weights.

Krieger was the first to construct a non-ITPFI factor in 1970 [22]; it was

t Research partially supported by NSF Grant #MCS 8102399.

Received September 10, 1981

118 **J. HAWKINS** J. HAWKINS Isr. J. Math.

Connes who proved that Krieger's factor was non-ITPFI [3]. Here we construct a C^* diffeomorphism of T^* whose associated factor is non-ITPFI, or equivalently, a diffeomorphism which is not weakly equivalent to an odometer of product type (cf. §1). Katznelson has shown that there is a bijection between ITPFI factors and weak equivalence classes of $C²$ diffeomorphisms of $T¹$ with irrational rotation numbers having unbounded continued fraction coefficients [15].

We have shown in [10] that every paracompact, connected manifold of dimension greater than or equal to three admits a smooth type III_0 diffeomorphism. All these examples seem to lie in the same (ITPFI) weak equivalence class. In this paper we give a different construction, from which we can obtain an uncountable family of non-weakly-equivalent type III_0 diffeomorphisms of T^3 , and a non-ITPFI diffeomorphism of $T⁴$. The method used is based on an example given in [8]. These diffeomorphisms have natural extensions to higher dimensional manifolds, which we give in §5.

In section 1 we introduce some necessary definitions and notation, and section 2 offers a short presentation of the flow associated to an ergodic automorphism; a more detailed version can be found in [8]. Section 3 gives a method for obtaining a C^* diffeomorphism of a manifold $X \times T^1$ whose associated flow is any prescribed measure-preserving C^* flow on a smooth manifold X. Sections 4 and 5 contain the examples mentioned above, which are obtained from the construction given in §3.

§1. Notation and definitions

Let (X, \mathcal{G}, μ) denote a Borel space where μ is a probability measure on (X, \mathcal{G}) . We define f to be a non-singular ergodic transformation of (X, \mathcal{G}, μ) if $\mu \sim f_*\mu$ (where $f_*\mu(A) = \mu(f^{-1}A)$ for every $A \in \mathcal{G}$), and if every f-invariant set $B \in \mathcal{G}$ satisfies either $\mu(B)=0$ or $\mu(B)=1$. We define the set $Aut(X, \mathcal{G}, \mu) = \{g : (X, \mathcal{G}, \mu) \circlearrowright$ such that g is invertible, bimeasurable, and $g_*\mu \sim \mu$, and let $O_g(x) = \{g''(x) : n \in \mathbb{Z}\}\$. The *full group* of $g \in \text{Aut}(X, \mathcal{G}, \mu)$ is defined by

$$
[g] = \{ h \in \text{Aut}(X, \mathcal{G}, \mu) : h(x) \in O_g(x) \text{ for } \mu \text{-a.e. } x \in X \}.
$$

DEFINITION 1.1. Two transformations $f, g \in Aut(X, \mathcal{G}, \mu)$ are *weakly equivalent* or *orbit equivalent* if there exists a bimeasurable invertible map $\psi : X \rightarrow X$ with $\psi_*^{-1}\mu \sim \mu$ and $\psi(O_t(x)) = O_s(\psi(x))$ for μ -a.e. $x \in X$.

We now introduce an invariant of weak equivalence.

DEFINITION 1.2. Let $f \in Aut(X, \mathcal{G}, \mu)$ be an ergodic transformation. A non-

negative real number t is said to be in the *ratio set of f,* $r^*(f)$, if for every Borel set $B \in \mathcal{G}$ with $\mu(B) > 0$, and for every $\varepsilon > 0$,

$$
\mu\left(\bigcup_{n\in\mathbb{Z}}\left(B\cap f^{n}B\cap\left\{x\in X:\left|\frac{d\mu f^{-n}}{d\mu}(x)-t\right|<\varepsilon\right\}\right)\right)>0
$$

Here $d\mu f^{-n}/d\mu$ denotes the Radon-Nikodym derivative of $f^*_{\mu}\mu$ with respect to μ . We set $r(f) = r^*(f) \setminus 0$. It has been shown that $r(f)$ is a closed subgroup of the multiplicative group of positive real numbers \mathbb{R}^+ , and that f admits a σ -finite invariant measure equivalent to μ if and only if $r^*(f) = \{1\}$, [19]. If not, there are three possibilities:

(1) $r^*(f) = \{t \in \mathbb{R} : t \ge 0\}$, in which case f is said to be of type III₁;

(2) $r^*(f) = \{0\} \cup \{\lambda^n : n \in \mathbb{Z}\}\$ for $0 < \lambda < 1$; in this case f is said to be of type III_{λ} ; or,

(3) $r^*(f) = \{0, 1\}$. Then f is of type III₀.

For each $\lambda \neq 0$, type III_{λ} automorphisms form a weak equivalence class, but type III₀ automorphisms are highly non-unique.

We define an *odometer of product type.*

DEFINITION 1.3. Let $\{n_k\}_{k=1}^{\infty}$ be a sequence of positive integers, and set $X = \prod_{k=1}^{\infty} \{0, 1, \dots, n_k - 1\}$, with the product Borel structure. Define T on X by:

$$
(Tx)_k = \begin{cases} 0 & \text{if } k < N(x), \\ x_k + 1 & \text{if } k = N(x), \\ x_k & \text{if } k > N(x), \end{cases}
$$

where $N(x) = \inf\{k \ge 1 : x_k \ne n_k - 1\}$. (In particular, $T(\{n_k - 1\})$ is the zero sequence.) Let ν_k be a probability measure on $\{0, 1, \dots, n_k-1\}$ such that the probability of every digit is positive and the product measure $v = \prod v_k$ is non-atomic on X. It is not hard to check that ν is ergodic and quasi-invariant under T. By $\mathcal{O}(\{n_k\}, \{\nu_k\})$ we denote the odometer of product type defined by T on (X, ν) . An automorphism f of a Lebesgue space (X, \mathcal{G}, μ) is of *product type* (or *ITPFI*) if it is weakly equivalent to some $\mathcal{O}(\{n_k\}, \{\nu_k\})$.

REMARKS. (1) One important method used to study weak equivalence classes of systems $f \in Aut(X, \mathcal{G}, \mu)$ is to study the crossed product algebras $W^*(L^*(X, \mu), f)$; i.e., the group measure space construction of von Neumann [25]. An ergodic transformation has a von Neumann factor associated to it in a canonical way and weakly equivalent transformations give isomorphic von Neumann factors. These factors are sometimes called Krieger factors. In particular, automorphisms of product type give factors W^* which are ITPFI;

120 **J. HAWKINS Isr. J. Math.**

that is, $W^* = \bigotimes_{k=1}^{\infty} (M_k, \phi_k)$ acts on the Hilbert space $H_k = \bigotimes_{k=1}^{\infty} (H_k, \Phi_k)$ where the M_k are type I_{n_k} factors acting on H_k , $2 \leq n_k \leq \infty$, and $\phi_k(x) =$ $(\Phi_k, x\Phi_k)$ is a faithful state on M_k . For details see [1]. From now on we will refer to automorphisms of product type as ITPFI automorphisms.

(2) Katznelson has shown that every C^2 diffeomorphism of $T' = R/Z$ whose rotation number has unbounded continued fraction coefficients is ITPFI, and that every odometer of product type is weakly equivalent to a C^* diffeomorphism of T^1 [15].

§2. The flow associated to an ergodie automorphism

A one parameter group $\{U_s : -\infty < s < \infty\}$ of automorphisms of (X, \mathcal{G}, μ) is called a *measurable non-singular flow* if the map $(x, s) \mapsto U_s x$ from $X \times \mathbf{R}$ onto X is measurable. If $\psi : X \to \mathbf{R}$ is measurable and satisfies $\psi(U_s x) = \psi(x)$ for μ -a.e. $x \in X$ and every $-\infty < s < \infty$, then ψ is called a $\{U_s\}$ -invariant function. If $\{U_s\}$ admits no non-constant invariant functions then we say that $\{U_s\}$ is an *ergodic flow.* Two flows U_s : (X, S, μ) \bigcirc and U'_s : (X', S', μ') \bigcirc are *isomorphic* if there exists an invertible bimeasurable map $\rho : X \to X'$ such that $\rho_*^{-1}\mu \sim \mu$ and satisfying $U'_s \rho(x) = \rho U_s(x)$ for μ -a.e. $x \in X$.

The following definitions and results come from [8].

DEFINITION 2.1. Let (X, \mathcal{G}, μ) be a Lebesgue space with μ a probability measure and let ζ be an arbitrary partition of X. We denote by $\mathcal{B}(\zeta)$ the sub- σ -algebra of $\mathcal G$ consisting of all sets in $\mathcal G$ which are unions of elements of ζ . We define ζ to be a *measurable partition* of X if there exists a countable set of sets B_n , $n = 1, 2, \cdots$ in $\mathcal{B}(\mathcal{S})$ such that for any $C_1, C_2 \in \zeta$, $C_1 \neq C_2$, there exists an *n* such that either $C_1 \subset B_n$ and $C_2 \subset X \setminus B_n$, or $C_2 \subset B_n$ and $C_1 \subset X \setminus B_n$.

Let ζ be a measurable partition of X and π the natural surjection from X onto X/ζ , i.e., $\pi x = \pi x'$ if x and x' are in the same element $C(\zeta)$ of ζ . We define \mathcal{S}_{ζ} to be the σ -algebra consisting of all sets $E \in X/\zeta$ such that $\pi^{-1}E \in \mathcal{B}(\zeta)$. Let $\mu_{\zeta}(E) = \mu(\pi^{-1}E)$ for all E in \mathcal{S}_{ζ} . If μ_{ζ} has no atomic parts, then $(X/\zeta, \mathcal{S}_\zeta, \mu_\zeta)$ is a Lebesgue space, called the quotient measure space of (X, \mathcal{S}, μ) with respect to ζ .

We now consider the Z-action of an ergodic automorphism f on (X, \mathcal{G}, μ) , i.e., $(n, x) \mapsto f^{n}x$ for every $n \in \mathbb{Z}$, $x \in X$. We define

$$
S_f(x, t) = \left(fx, t - \log \frac{d\mu f^{-1}}{d\mu}(x)\right) \quad \text{for every } (x, t) \in X \times \mathbf{R}
$$

By $(X \times \mathbf{R}, \mathcal{G} \times \mathcal{T}, \mu \otimes \lambda)$ we will denote the measure space obtained by

forming the cartesian product of (X, \mathcal{S}, μ) and $(\mathbf{R}, \mathcal{T}, \lambda)$, where λ denotes Haar (Lebesgue) measure and the product σ -algebra is formed in the usual way.

DEFINITION 2.2. A map ϕ from $X \times \mathbf{R}$ onto a Lebesgue space (Y, \mathcal{F}, ν) is called a *factor map* with respect to S_f if it satisfies:

(1) $\phi^{-1}A \in \mathcal{G} \times \mathcal{T}$ if and only if $A \in \mathcal{F}$.

(2) μ ($\phi^{-1}A$) = 0 if and only if $\nu(A) = 0$, $\forall A \in \mathcal{F}$.

(3) $\phi \circ S_f(x, t) = \phi(x, t)$ for a.e. $(x, t) \in X \times \mathbb{R}$.

(4) If $\eta : X \times \mathbb{R}$ is an S_f -invariant function, then there is a function $\bar{\eta} : Y \to \mathbb{R}$ such that $\eta(x, t) = \overline{\eta}(\phi(x, t))$ for $\mu \otimes \lambda$ -a.e. $(x, t) \in X \times \mathbb{R}$.

The following lemma states that factor maps are unique up to isomorphism.

LEMMA 2.3. [8] *Let* ϕ_1 *and* ϕ_2 *be measurable maps from* $(X \times \mathbf{R}, \mathcal{G} \times \mathbf{R})$ $\mathcal{T}, \mu \otimes \lambda$) *onto Lebesgue spaces* $(Y_1, \mathcal{F}_1, \nu_1)$ *and* $(Y_2, \mathcal{F}_2, \nu_2)$ *respectively, satisfying* $\nu_i(A_i) = 0$ *if and only if* $\mu \otimes \lambda(\phi_i^{-1}A_i) = 0$, $A_i \in \mathcal{F}_i$ for $i = 1, 2$. If for any *measurable function* $\bar{\eta}_2$ on Y_2 there exists a measurable function $\bar{\eta}_1$ on Y_1 *satisfying :*

$$
\bar{\eta}_2(\phi_2(x,t)) = \bar{\eta}_1(\phi_1(x,t)) \quad \text{for a.e. } (x,t) \in X \times \mathbf{R},
$$

and if for any measurable function $\bar{\eta}_1$ *on* Y_1 *there exists a measurable function* $\bar{\eta}_2$ *on Y2 satisfying the above equation, then there exists an isomorphism* ψ : $(Y_1, \mathcal{F}_1, \nu_1) \rightarrow (Y_2, \mathcal{F}_2, \nu_2)$ satisfying $\psi(\phi_1(x, t)) = \phi_2(x, t)$ for a.e. $(x, t) \in X \times \mathbf{R}$.

Let $\zeta(f)$ denote the measurable partition which generates all S_f invariant sets, and let π_t denote the natural surjection from $X \times \mathbf{R}$ onto the measure space $X \times \mathbb{R}/\zeta(f)$. It is easy to see that π_f is a factor map with respect to S_f . We now define a flow on $X \times \mathbf{R}$ by $T_t(x, s) = (x, s + t)$ for every $(x, s) \in X \in \mathbf{R}$, and $-\infty < t < \infty$. Since S_f commutes with $\{T_t\}$ for all $t \in \mathbb{R}$, the image under π_f of ${T_i}$ is a flow on $(X \times \mathbf{R}/\zeta(f), \mathcal{S}_\zeta, \mu_\zeta)$ defined by $\tilde{T}_i(\pi_f(x, s)) = \pi_f(T_i(x, s))$ for a.e. $(x, s) \in X \times \mathbb{R}$. It has been proved that weakly equivalent transformations $f:(X,\mathscr{S},\mu)$ \circlearrowright and $f':(X',S',\mu')$ \circlearrowright give rise via the above construction to isomorphic flows, $\{\pi_f T_i\}$ and $\{\pi_f T'_i\}$, and we call the isomorphism class of the flow *the flow associated to f.* An automorphism f is of type III₀ if and only if its associated flow is an aperiodic conservative ergodic flow [8, 23].

§3. Construction of a type IIIo diffeomorphism

In $[10]$ a method was given for constructing smooth type III_0 diffeomorphisms of any paracompact manifold of dimension greater than or equal to three, as well 122 J. HAWKINS Isr. J. Math.

as on T^2 . We give a different method here for constructing type III₀ diffeomorphisms, based on a construction of (non-smooth) automorphisms given by Hamachi and Osikawa [8]. This method only provides examples in dimensions ≥ 3 but the advantage of this construction is the following: given any smooth measure preserving flow, $\{U_s\}$, of a C^* manifold, we can construct a C^* diffeomorphism whose associated flow is $\{U_s\}$.

In section 4 we will use this construction to prove the existence of non-ITPFI diffeomorphisms since Connes and Woods proved that ITPFI transformations must have certain types of associated flows [6, 7].

The main theorem of this section gives a method for constructing an ergodic type IIIo transformation of a manifold, which may not be smooth, but is weakly equivalent to a smooth diffeomorphism with a prescribed associated flow. We first need a lemma proved in $[8]$ about type III, transformations.

DEFINITION 3.1. Let $f \in Aut(X, \mathcal{G}, \mu)$ be ergodic. If there exists an ergodic subgroup H of $[f]$ and a σ -finite measure $\bar{\mu}$ which is H-invariant and equivalent to μ , we say that $\bar{\mu}$ is an f-admissible measure. If there exists a countable subset $\Gamma \subset \mathbb{R}^+$ such that for any $n \in \mathbb{Z}$, $d\bar{\mu}f^{-n}(x)/d\bar{\mu} \in \Gamma$ for a.e. $x \in X$, then $\bar{\mu}$ is *strictly admissible.*

LEMMA 3.2. *Every ergodic automorphism f of a Lebesgue space* (X, \mathcal{G}, μ) of *type* III_1 *admits a strictly admissible finite measure* $\bar{\mu}$ *and*

$$
\Delta(\bar{\mu}, f) = \left\{ r \in \Gamma \, \middle| \, \exists n \in \mathbb{Z} \text{ s.t. } \mu \left\{ x : \frac{d\bar{\mu}f^{-n}}{d\bar{\mu}}(x) = r \right\} > 0 \right\}
$$

is a dense subgroup of R.*

In what follows, (X, \mathcal{S}, μ) will denote a paracompact C^* manifold, μ a smooth σ -finite measure, and \mathcal{S} will denote the σ -algebra of Borel sets of X. Similarly, (Y, \mathcal{F}, ν) will denote a C^* manifold with ν a smooth measure.

THEOREM 3.3. Let $f \in \text{Diff}^*(X)$ be an ergodic diffeomorphism of X, and let ${U_s}$ be a C^{*} flow on (Y, \mathcal{F}, ν) which is aperiodic, ergodic, and measure *preserving.*

Assume that f is of type III₁ and that $\bar{\mu} \sim \mu$ *is a strictly f-admissible measure, and define a transformation on* $X \times Y$ by:

$$
F(x, y) = (fx, U_{log(d\bar{\mu}f^{-1}(x)/d\bar{\mu})}(y)) \qquad \text{for every } x \in X \text{ and } y \in Y.
$$

Then F is an ergodic transformation of $(X \times Y, \mathcal{G} \times \mathcal{F}, \mu \otimes \nu)$ which gives a type III_0 *Z-action, and whose associated flow is* $\{U_s\}$ *.*

PROOF. Let $\varphi : X \times Y \times \mathbb{R} \to Y$ be defined by $\varphi(x, y, t) = U_t(y)$ for every $x \in X$, $y \in Y$, $t \in \mathbb{R}$. Consider the transformation S_F defined as in §2:

$$
S_F(x, y, t) = \left(fx, U_{\log(d\bar{\mu}f^{-1}(x)d\bar{\mu})}(t), t - \log \frac{d\bar{\mu} \otimes \nu F^{-1}}{d\bar{\mu} \otimes \nu}(x, y)\right).
$$

We claim that $\varphi \circ S_F = \varphi$, $\bar{\mu} \otimes \nu \otimes m$ -a.e. (where *m* denotes Lebesgue measure on **R**). The claim is true because for any $(x, y, t) \in X \times Y \times \mathbb{R}$,

$$
\varphi \circ S_F(x, y, t) = \varphi \left(fx, U_{\log(d\vec{\mu}f^{-1}(x)/d\vec{\mu})}(y), t - \log \frac{d\vec{\mu} \otimes \nu F^{-1}}{d\vec{\mu} \otimes \nu}(x, y) \right)
$$

=
$$
U_{t-\log(d\vec{\mu} \otimes \nu F^{-1}(x, y)/d\vec{\mu} \otimes \nu)}(U_{\log(d\vec{\mu}f^{-1}(x)/d\vec{\mu})}(y))
$$

=
$$
U_{t-\log(d\vec{\mu} \otimes \nu F^{-1}(x, y)/d\vec{\mu} \otimes \nu) + \log(d\vec{\mu}f^{-1}(x)/d\vec{\mu})}(y).
$$

Now since U_s preserves ν , we have

$$
\log \frac{d\bar{\mu} \otimes \nu F^{-1}}{d\bar{\mu} \otimes \nu}(x, y) = \log \left(\det \begin{pmatrix} Df^{-1}(x) & 0 \\ D_x U_t(x, y) & D_y U_t(x, y) \end{pmatrix} \right),
$$

where

$$
l=\log\frac{d\tilde{\mu}f^{-1}}{d\tilde{\mu}}(x),
$$

SO

$$
\log \frac{d\bar{\mu} \otimes \nu F^{-1}}{d\bar{\mu} \otimes \nu}(x, y) = \log \left(\det \begin{pmatrix} Df^{-1}(x) & 0 \\ D_x U_t(x, y) & 1 \end{pmatrix} \right) = \log \frac{d\bar{\mu}f^{-1}}{d\bar{\mu}}(x).
$$

Thus $\varphi \circ S_F(x, y, t) = U_t(y) = \varphi(x, y, t) \bar{\mu} \otimes \nu \otimes m$ -a.e., proving the claim.

Our aim is to prove that φ is a factor map onto $X \times Y \times \mathbb{R}/\zeta(S_F) \cong Y$. In order to prove this we need to show that for any S_F -invariant function $\psi : X \times Y \times \mathbb{R}$ $\rightarrow \mathbb{R}$ there is a function $\tilde{\psi}$ defined on Y such that $\psi(x, y, t) = \tilde{\psi}(\varphi(x, y, t))$ $\tilde{\psi}(U_t(y))$ for a.e. $(x, y, t) \in X \times Y \times \mathbb{R}$.

Suppose that ψ is S_F-invariant. Consider all $h \in [f]$ such that

(3.1)
$$
\frac{d\bar{\mu}h^{-1}}{d\bar{\mu}}(x) = 1 \quad \text{for } \bar{\mu} \text{-a.e. } x \in X.
$$

We know that there exist automorphisms h satisfying (3.1) by Lemma 3.2, since $\bar{\mu}$ is an f-admissible measure. Then for a.e. $(x, y, t) \in X \times Y \times \mathbb{R}$,

(3.2)
$$
\psi(hx, y, t) = \psi \circ S_F(hx, y, t)
$$

(3.3)
$$
= \psi\left(f(hx), U_{\log(d\tilde{\mu}f^{-1}(hx)/d\tilde{\mu})}(y), t - \log \frac{d\tilde{\mu}f^{-1}}{d\tilde{\mu}}(hx)\right)
$$

(3.4)
$$
= \psi \left(f(f^{n(x)} x), U_{\log(d\bar{\mu}f^{-1}(f^{n(x)} x)/d\bar{\mu})}(y), t - \log \frac{d\bar{\mu}f^{-1}}{d\bar{\mu}} (f^{n(x)} x) \right).
$$

By (3.1) and the chain rule,

$$
(3.5) \qquad = \psi\left(f^{n(x)+1}x, U_{\log(d\tilde{\mu}f^{-(n(x)+1)}(x))d\tilde{\mu}}(y), t - \log \frac{d\tilde{\mu}f^{-(n(x)+1)}}{d\tilde{\mu}}(x)\right)
$$

$$
= \psi(x, y, t).
$$

Since the group satisfyting (3.1) is ergodic, ψ must be $\bar{\mu}$ -a.e. constant with respect to x, so ψ is a function of (y, t) . Then we have:

(3.6)
$$
\psi\left(U_{\log(d\tilde{\mu}f^{-1}(x)d\tilde{\mu})}(y),t-\log\frac{d\tilde{\mu}f^{-1}}{d\tilde{\mu}}(x)\right)=\psi(y,t)
$$

for a.e. $(x, y, t) \in X \times Y \times \mathbb{R}$. Lemma 3.2 implies that the set

$$
\left\{\log\frac{d\bar{\mu}f^{-n}}{d\bar{\mu}}(x):n\in\mathbb{Z}\right\}
$$

is dense in **R** for $\bar{\mu}$ -a.e. $x \in X$, and since the flow $\{U_{s}\}\$ is continuous, we have $\psi(U_s(y), t - s) = \psi(y, t)$ for $\nu \otimes m$ -a.e. $(y, t) \in Y \times \mathbb{R}$, for every $-\infty < s < \infty$. In particular, setting $s = t$, we have for $\bar{\mu} \otimes \nu \otimes m$ -a.e. $(x, y, s) \in X \times Y \times \mathbb{R}$,

$$
\psi(x, y, s) = \tilde{\psi}(y, s) = \tilde{\psi}(U_s(y), 0) = \tilde{\psi}(\varphi(x, y, s)).
$$

Therefore φ is a factor map from $X \times Y \times \mathbb{R}$ onto Y with respect to S_F and the associated flow of F is $\{U_s\}$.

As an easy corollary of Theorem 3.3 we obtain a diffeomorphism which is of type III₀.

COROLLARY. 3.4. If we replace $\bar{\mu}$ in the statement of Theorem 3.3 with the given smooth measure μ on X and define

$$
G(x, y) = (fx, U_{log(d\mu f^{-1}(x)/d\mu)}(y)) \quad \text{for every } (x, y) \in X \times Y,
$$

then G is a diffeomorphism which is weakly equivalent to F.

PROOF. To see that G is a diffeomorphism, we remark first that $(x, y) \mapsto (fx, U, (y))$ is a diffeomorphism for each $s \in \mathbb{R}$, and that

$$
G(x, y) = (fx, U_{log(d\mu f^{-1}(x)/d\mu)}(y))
$$

is C^* .

It is not difficult to see that G^{-1} exists and is defined by:

$$
(3.7) \qquad \qquad (x, y) \mapsto (f^{-1}x, U_{\log(d\mu f(x)/d\mu)}(y)),
$$

which is also C^* . This proves that G is a diffeomorphism. (To check (3.7), we verify that $G \circ G^{-1}(x, y) = (x, y)$ as follows:

$$
(3.8) \tG \circ G^{-1}(x, y) = G(f^{-1}x, U_{log(d\mu f(x)/d\mu)}(y))
$$

(3.9)
$$
= (f \circ f^{-1}x, U_{\log(d\mu f^{-1}(f^{-1}x))d\mu}) \circ U_{\log(d\mu f(x))d\mu})(y))
$$

$$
(3.10) = (x, U_{\log(d\mu f^{-1}(f^{-1}x)/d\mu) + \log(d\mu f(x)/d\mu)}(y))
$$

$$
(3.11) \qquad \qquad = (x, y).
$$

We obtain (3.11) from (3.10) since

$$
0 = \log \frac{d\mu}{d\mu}(x) = \log \frac{d\mu(\text{id})^{-1}}{d\mu}(x) = \log \frac{d\mu(f \circ f^{-1})^{-1}}{d\mu}(x)
$$

$$
= \log \left[\frac{d\mu f^{-1}}{d\mu}(f^{-1}x) \cdot \frac{d\mu f}{d\mu}(x)\right]
$$

$$
= \log \frac{d\mu f^{-1}}{d\mu}(f^{-1}x) + \log \frac{d\mu f}{d\mu}(x),
$$

recalling that $d\mu f/d\mu$ denotes the Radon-Nikodym derivative of $f_*^{-1}\mu$ with respect to μ .

Similarly, we can show that $G^{-1} \circ G(x, y) = (x, y)$ for every $(x, y) \in X \times Y$.)

To show that G is weakly equivalent to F , we exhibit a measurable isomorphism which takes orbits of F to orbits of G. We define $H: X \times Y \rightarrow X \times Y$ Y by:

(3.12)
$$
H(x, y) = (x, U_{log(d\mu(x)/d\bar{\mu})}(y))
$$

for all $(x, y) \in X \times Y$. It is not difficult to see that H is measurable, invertible, and leaves the measure $\mu \otimes \nu$ on $X \times Y$ quasi-invariant. We claim that $H \circ F = G \circ H \mu \otimes \nu$ -a.e. To prove the claim, (3.12) implies:

(3.13)
$$
H \circ F(x, y) = H(fx, U_{log(d\bar{\mu}f^{-1}(x)/d\bar{\mu})}(y))
$$

(3.14) *= (fx, Ulog(aMfx)/dt~)+,og(at.z! '(x)/at~)(Y))*

(3.15) = fix, U,o~,,,,:-,,~,/~,(y))

for $\mu \otimes \nu$ -a.e. $(x, y) \in X \times Y$. Statements (3.14) and (3.15) are equal by an application of the chain rule.

Similarly,

- (3.16) $G \circ H(x, y) = G(x, U_{\log(d_{\mu}(x)/d_{\bar{\mu}})}(y))$
- (3.17) $= (fx, U_{log(d\mu f^{-1}(x)/d\mu) + log(d\mu(x)/d\bar{\mu})}(y))$
- (3.18) $= (fx, U_{log(d\mu f^{-1}(x)/d\bar{\mu})}(y))$

$$
= H \circ F(x, y)
$$
 $\mu \otimes \nu$ -a.e. by (3.13)–(3.15).

This concludes the proof of the corollary.

REMARK 3.5. In [1] Araki and Woods constructed uncountably many nonisomorphic type III₀ factors. In [21] Krieger constructed an uncountable family of non-weakly-equivalent ergodic automorphisms of type IIIo. Here we construct an uncountable family of non-weakly-equivalent type III₀ diffeomorphisms of T^3 . We define the family, denoted G_{λ} , $0 < \lambda < 1$, as follows. Let $f \in \text{Diff}^*(T^1)$ be of type III₁, and let $g_{\lambda} \in \text{Diff}^{*}(T^{1})$ be of type III_{λ}. These diffeomorphisms exist by [14]. Let U^{λ} denote the suspension flow of g_{λ} ; i.e., the flow induced by $U_s(y, z) = (y, z + s)$ $\forall y \in T^1$, $z \in \mathbb{R}$, $s \in \mathbb{R}$ on the space $T^1 \times \mathbb{R}/(y, z) \sim$ $(g_{\lambda}^{n}y, z + n)$ for all $y \in T^{1}, z \in \mathbb{R}$, $n \in \mathbb{Z}$. This defines an aperiodic, conservative, ergodic flow on T^2 , which we call U_s^{λ} .

For $(x, y, z) \in T^3$, we define:

$$
G_{\lambda}(x, y, z) = (fx, U_{log(dmf^{-1}(x)/dm)}^{ \lambda}(y, z)),
$$

using m to denote Lebesgue measure on $T¹$. By Theorem 3.3 and Corollary 3.4 it follows that G_{λ} is of type III₀ with U_{s}^{λ} as its associated ergodic flow. Since g_{λ} is not weakly equivalent to g_{β} if $\lambda \neq \beta$, then U_{β}^{λ} is not isomorphic to U_{β}^{β} ; hence G_{λ} and G_{β} cannot be weakly equivalent.

§4. Non-ITPFI diffeomorphisms

In this section we use results of Connes and Woods which give conditions for Krieger factors (cf. §1) to be non-ITPFI (see [6, 7, 28]). Combining these results with Krieger's theorem which gives an isomorphism between aperiodic, conservative, ergodic flows and flows of weights on type $III₀$ Krieger factors allows us to obtain non-ITPFI ditteomorphisms. In fact the flow associated to an ergodic group action of f on (X, \mathcal{G}, μ) is the same (up to isomorphism) as the flow of weights obtained from the Krieger factor $W^*(L^{\infty}(X,\mu),f)$. (See [27] for a good exposition of this point.)

We begin with a definition of a property which is stronger than ergodicity.

DEFINITION 4.1. [7] Let (X, \mathcal{G}, μ) be a Lebesgue space and let α : $G \rightarrow$ Aut(X, \mathcal{S}, μ) be a homomorphism from a locally compact group G to the group of automorphisms of (X, \mathcal{G}, μ) . We say that α is *approximately transitive* if given $\varepsilon > 0$ and $h_1, \dots, h_r \in L^1(X, \mu)$, there exists $h \in L^1(X, \mu)$ and $\gamma_1, \dots, \gamma_r \in L^1(G, dg)$ such that for every $1 \leq j \leq r$,

$$
\left\| h_i - \int_G h \circ \alpha_g \cdot \gamma_i(g) \cdot \frac{d\mu \alpha_g}{d\mu} dg \right\|_1 \leq \varepsilon,
$$

where $d\mu \alpha_{g}/d\mu$ denotes the Radon-Nikodym derivative of $\alpha_{g} \cdot \mu$ with respect to μ . We say also that α is AT, or, when $G = \mathbb{Z}$ and the action is given by a single transformation $f = \alpha_1$, we say that f is AT. A flow built under a constant ceiling function is AT if and only if the base transformation is AT [7].

We now state some results on AT transformations and flows.

THEOREM 4.2. [7] If $f \in Aut(X, \mathcal{G}, \mu)$ *is* AT, *then f is ergodic.*

THEOREM 4.3. [7] *If W* is a Krieger factor, which is* ITPFI, *then the associated flow of weights is* AT.

COROLLARY. 4.4. If f is an ergodic automorphism of (X, \mathcal{G}, μ) which is ITPFI, *then its associated flow is* AT.

THEOREM 4.5. [7] *If f is a finite measure-preserving transformation which is* AT, *then f has zero entropy.*

Our task is now a simple one. We consider the diffeomorphisms of $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ given by the matrices

$$
U_n=\begin{pmatrix}n+1&1\\n&1\end{pmatrix};
$$

that is, $U_n(y_1, y_2) = ((n + 1)y_1 + y_2, ny_1 + y_2)$ (mod 1) for every integer $n \ge 1$, and for every $(y_1, y_2) \in T^2$. Each U_n gives an ergodic, measure-preserving group automorphism of the torus isomorphic to a Bernoulli shift [13]. Since the entropy of U_n is $\log((n+2+\sqrt{n(n+4)})/2)$, then Theorem 4.5 implies that U_n is not AT. We now take the suspension flow of U_n for each n , and we can easily check that we obtain a countable family of aperiodic, conservative, ergodic flows which are all mutually non-isomorphic.

The following result is now easily proved.

THEOREM 4.6. *There exists a* C^* diffeomorphism of T^* which is non-ITPFI.

PROOF. Let $f \in \text{Diff}^*(T^1)$ be a type III₁ diffeomorphism. Let $\{U_s\}_{s \in \mathbb{R}}$ be the flow defined as above for $n = 1$, i.e., $U: T^2 \rightarrow T^2$ is given by $U(y_1, y_2) =$ $(2y_1 + y_2, y_1 + y_2)$ (mod 1), and $\{U_s\}$ is the suspension flow of U on T^3 .

By Corollaries 3.4 and 4.4 the map $K : T^4 \rightarrow T^4$ defined by:

 $K(x, \bar{y}) = (fx, U_{log(dmt^{-1}(x)/dm)}(\bar{y}))$ for every $x \in T^1$, $\bar{y} \in T^3$

is a diffeomorphism which is non-ITPFI.

COROLLARY. 4.7. *There exists a countably infinite family of weak equivalence classes of non-ITPFI diffeomorphisms of* $T⁴$ *.*

§5. Difleomorphisms of higher dimensional manifolds

In this section we use methods from [10] and [11] to extend our construction to higher dimensions. The following lemma is necessary to generalize the construction.

LEMMA 5.1. *Suppose* $K : T^4 \rightarrow T^4$ is defined as in Theorem 4.6. Let $K_{\psi} : T^4 \times T^4$ $\mathbf{R} \rightarrow T^4 \times \mathbf{R}$ *be defined by:*

$$
K_{\psi}(x,\bar{y},t)=(K(x,\bar{y}),t+\psi(x,\bar{y}))
$$

for every $(x, \bar{y}) \in T^4$, $t \in \mathbb{R}$, and $\psi \in C^*(T^4, \mathbb{R})$; *suppose also that* K_{ψ} *is ergodic* with respect to Lebesgue measure on $T^4 \times \mathbb{R}$ and is of type III₀. Then K_{ψ} is *non* -ITPFI.

PROOF. The idea of the proof is to show that K_{ψ} is weakly equivalent to K, and is therefore non-ITPFI.

We first remark that by Corollary 3.4, K is weakly equivalent to:

$$
\overline{K}(x,\overline{y})=(fx, U_{log(\overline{m}f^{-1}(x)/d\overline{m})}(\overline{y}))
$$

where $\bar{m} \sim m$ is a strictly f-admissible measure on T^1 . We then claim that \bar{K} is weakly equivalent to \bar{K}_{ψ} , which is defined on $T^4 \times \mathbb{R}$ by:

$$
\overline{K}_{\psi}(x,\overline{y},t)=(K(x,\overline{y}),t+\psi(x,\overline{y})).
$$

It follows that \bar{K}_{ψ} has the same associated ergodic flow, $\{U_{s}\}\)$, as \bar{K} . (The associated factor map for \overline{K}_{ψ} is $\overline{\varphi}: T^{1} \times T^{3} \times \mathbb{R} \times \mathbb{R} \to T^{3}$ given by $\overline{\varphi}(x, \overline{y}, t, s) =$ $U_s(\bar{y})$.) Another application of Corollary 3.4 shows that \bar{K}_{ψ} is weakly equivalent to K_{ψ} . The result follows from the transitivity of weak equivalence.

To see that Lemma 5.1 is not vacuous, we apply a theorem from [10]. Let (X, \mathcal{G}, μ) denote a smooth connected paracompact manifold with μ a C^* probability measure on X. Let $g \in \text{Diff}^*(X)$ be an ergodic diffeomorphism. We define the set

$$
\mathscr{C} = \text{cl}\{\psi \in C^*(X,\mathbf{R}) \mid \psi = \eta - \eta \circ g \text{ for some Borel map } \eta : X \to \mathbf{R}\},
$$

where cl denotes the closure taken with respect to the C^* topology in $C^*(X, \mathbf{R})$. The next theorem states that there are many functions in $\mathscr C$ (in the Baire category sense) which give ergodic extensions if g is of type IIIo.

THEOREM 5.2. Suppose that $g \in \text{Diff}^*(X)$ is an ergodic type III_0 diffeomorph*ism. Then the set*

$$
\mathscr{C}_0 = \{ \psi \in \mathscr{C} \mid (z, t) \mapsto (gz, t + \psi(z)) \,\forall z \in X, \, t \in \mathbb{R}, \text{ is of type III}_0 \}
$$

is a dense G_{δ} *in* \mathscr{C} *.*

We use this to prove the next theorem.

THEOREM 5.3. *There exists a diffeomorphism of* $T^* \times \mathbb{R}^p$ for every $p \ge 0$, which *is* C^* and non-ITPFI.

PROOF. We use induction on p. We start with $K \in \text{Diff}^*(T^4)$ defined in Theorem 4.6. For $p = 1$, the theorem is true by Lemma 5.1 and Theorem 5.2. Assume the theorem is true for $p = j$. Then suppose that $K_i \in \text{Diff}^*(T^4 \times \mathbb{R}^j)$ is a non-ITPFI diffeomorphism. By Theorem 5.2 there is at least one function $\psi: T^4 \times \mathbb{R}^j \to \mathbb{R}$ such that $(z_i, t) \mapsto (K_i(z_i), t + \psi(z_i)) \ \forall z_i \in T^4 \times \mathbb{R}^j$, $t \in \mathbb{R}$, is of type III₀. Then by Lemma 5.2 this map is a non-ITPFI diffeomorphism of $T^4 \times \mathbb{R}^{j+1}$.

Finally, to extend our result to arbitrary manifolds of dimension ≥ 6 we apply the following lemmas.

LEMMA 5.4. [11] Let X be a p-dimensional C^* paracompact connected *manifold and* μ *a C*^{*} *measure on X. Then there exists an open set* $V \subset X$ *, diffeomorphic to* \mathbb{R}^p *and satisfying* μ $(X - V) = 0$ *.*

LEMMA 5.5. [11] *If* $p \ge 6$, *there exists an open set W of* \mathbb{R}^p *diffeomorphic to* $T^5 \times \mathbb{R}^{p-5}$ *such that* $m(\mathbb{R}^p - W) = 0$.

LEMMA 5.6. *Let* $K_0 \in \text{Diff}(T^4)$ *denote the ergodic non-ITPFI diffeomorphism (K) defined in Theorem 4.6, and by* K_i *,* $j \ge 1$ *, we will denote a diffeomorphism of* $T^4 \times \mathbf{R}^j$ of the form:

$$
(z, t_1, t_2, \dots, t_j) \mapsto (K_0(z), t_1 + \psi_1(z), \dots, t_j + \psi_j(z, t_1, \dots, t_{j-1}))
$$

for every $z \in T^4$ *,* $t_i \in \mathbb{R}$ *,* $1 \leq i \leq j$. If F^i , $T^i \times \mathbb{R}^j \times T^i$ \circlearrowright *denotes the suspension flow of K_i, then for m-a.e.* $s_0 \in \mathbb{R}$ *, and for every* $j \ge 0$ *,* $F_{s_0}^i$ *is a non-ITPFI diffeomorphism.*

PROOF. Since K_i is ergodic, then for almost every $s_0 \in \mathbb{R}$, $F_{s_0}^i$ is ergodic [11]. Using the same argument as in the proof of Lemma 5.1, we see that K_i and $F_{s_0}^i$ have the same ergodic flow associated to them so they are weakly equivalent, hence $F_{s_0}^i$ is non-ITPFI.

LEMMA 5.7. [10, 11] Let W be an open set of \mathbb{R}^p , and let F_s denote a C^* flow of *type III on W. Let* χ *be the infinitesimal generator of F_s, <i>i.e.*, χ *is defined by*:

$$
\frac{\partial F_s}{\partial s}(w)\big|_{s=0}=\chi\circ F_s(w)\qquad\forall w\in W
$$

We define $\varphi \in C^{\infty}(W, \mathbf{R}), \varphi > 0$ *such that the vector field* φ_X *is globally integrable* and defines a flow G_s. Then G_s is weakly equivalent to F_s.

THEOREM 5.8. There exists a C^{*} non-ITPFI diffeomorphism on every con*nected, paracompact manifold of dimension* ≥ 6 .

PROOF. By Lemmas 5.4 and 5.5 there exists an open set $W \subset X$ of full measure and such that W is diffeomorphic to $T^5 \times \mathbb{R}^{p-5}$ (where X is of dimension $p \ge 6$). By Theorem 5.3 there exists a C^* non-ITPFI diffeomorphism of $T^4 \times \mathbb{R}^{p-5}$; we denote it by K_{p-5} . We then take the suspension flow of K_{p-5} , denoted F_s^{p-5} , as in Lemma 5.6. Suppose that χ^{p-5} denotes the infinitesimal generator of F_s^{p-5} . We now define $\varphi \in C^*(X, \mathbf{R})$ such that $\varphi > 0$ on W, $\varphi = 0$ on $X - W$, and such that the vector field

$$
Y(x) = \begin{cases} \varphi(x)\chi^{p-5}(x), & \text{if } x \in W \\ 0, & \text{if } x \in X - W \end{cases}
$$

is C^* on X and globally integrable, thus defining a flow G_s^{p-5} on X. By Lemma 5.7, G_s^{p-5} is weakly equivalent to F_s^{p-5} . Then Lemma 5.6 implies that for *m*-a.e. $s_0 \in \mathbf{R}$, $G_{s_0}^{p-5}$ is a non-ITPFI diffeomorphism of X.

REFERENCES

1. H. Araki and E. J. Woods, *A classification of factors*, Publ. Res. Inst. Math. Sci., Ser. A 4 (1968), 51-130.

2. L. K. Arnold, *On a-finite invariant measures,* Z. Wahrscheinlichkeitstheor. Verw. Geb. 9 (1968), 85-97.

3. A. Connes, *Une classification des [acteurs de type III,* Ann. Sci. Ec. Norm. Super. 6 (1973), 133-252.

4. A. Connes, *On hyperfinite factors of type Ill,, and Krieger' s factors,* J. Funct. Anal. 18 (1975), 318-327.

5. A. Connes and M. Takesaki, *The flow of weights on factors of type HI,* Tohoku Math. J. 29 (1977), 473-575.

6. A. Connes and E. J. Woods, *A construction of approximately finite-dimensional non-lTPFl factors,* Can. Math. Bull. 23 (1980), 227-230.

7. A. Connes and E. J. Woods, *Approximately transitive flows and ITPFI factors,* to appear.

8. T. Hamachi and M. Osikawa, *Ergodic groups of automorphisms and Krieger's theorems,* preprint (1980).

9. T. Hamachi, Y. Oka and M. Osikawa, *Flows associated with ergodic non-singular transformation groups,* Publ. Res. Inst. Math. Sci. 11 (1975), 31-50.

10. J. Hawkins, *Smooth Type llI diffeomorphisms of manifolds,* Trans. Am. Math. Soc., to appear.

11. M. R. Herman, *Construction de difféomorphismes ergodiques*, preprint (1979).

12. M. R. Herman, *Sur la conlugaison differentiable des diffeomorphismes du cercle a des rotations,* Publ. I.H.E.S. No. 49 (1979), 5-234.

13. Y. Katznelson, *Ergodic automorphisms of T" are Bernoulli shifts,* Isr. J. Math. 10 (1971), I86-195.

14. Y. Katznelson, *Sigma-finite invariant measures for smooth mappings of the circle,* J. Analyse Math. 31 (1977), 1-18.

15. Y. Katznelson, *The action of diffeomorphisms of the circle on Lebesgue measure,* J. Analyse Math. 36 (1979), 156-166.

16. U. Krengel, *Darstellungssätze für Strömungen und Halbströmungen II*, Math. Ann. 182 (1969), 1-39.

17. W. Krieger, *On non-singular transformations of a measure space* L Z. Wahrscheinlichkeitstheor. Verw. Geb. 11 (1969), 83-97.

18. W. Krieger, *On non-singular transformations of a measure space II,* Z. Wahrscheinlichkeitstheor. Verw. Geb. 11 (1969), 98-119.

19. W. Krieger, *On the Araki- Woods asymptotic ratio set and non-singular transformations of a measure space,* Lecture notes in Math. 160, Springer-Verlag, 1970, pp. 158-177.

20. W. Krieger, *On constructing non-* isomorphic hyperfinite factors of type Ill,* J. Funct. Anal. 6 (1970), 97-109.

21. W. Krieger, *On a class of hyperfinite factors that arise from null-recurrent Markov chains, J.* Funct. Anal. 7 (1971), 27-42.

22. W. Krieger, *On the infinite product construction of non-singular transformations of a measure space*, Invent. Math. **15** (1972), 144-163.

23. W. Krieger, *On ergodic flows and isomorphism of factors,* Math. Ann. 223 (1976), 19-70.

24. I. Kubo, *Ouasi-flows,* Nagoya Math. J. 35 (1969), 1-30.

25. J. von Neumann, *On rings of operators II1,* Ann. of Math. 41 (1940), 94-161.

26. D. S. Ornstein, *On invariant measures,* Bull. Am. Math. Soc. 66 (1960), 297-300.

27. C. E. Sutherland, *Notes on orbit equivalence ; Krieger's theorem,* Lecture note series no. 23, Univ. i Oslo, 1976.

28. E. J. Woods, *ITPFI factors -- a survey,* Queen's University, preprint (1980).

MATHEMATICS DEPARTMENT

STATE UNIVERSITY OF NEW YORK AT STONY BROOK STONY BROOK, NY 11794 USA